Changeset 1184 for trunk/yat/classifier
- Timestamp:
- Feb 28, 2008, 7:49:57 PM (16 years ago)
- Location:
- trunk/yat/classifier
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/yat/classifier/NBC.cc
r1182 r1184 61 61 sigma2_.resize(data.rows(), target.nof_classes()); 62 62 centroids_.resize(data.rows(), target.nof_classes()); 63 utility::Matrix nof_in_class(data.rows(), target.nof_classes());64 63 65 64 for(size_t i=0; i<data.rows(); ++i) { … … 72 71 assert(i<centroids_.rows()); 73 72 assert(j<centroids_.columns()); 74 centroids_(i,j) = aver[j].mean();75 73 assert(i<sigma2_.rows()); 76 74 assert(j<sigma2_.columns()); … … 79 77 centroids_(i,j) = aver[j].mean(); 80 78 } 81 79 else { 82 80 sigma2_(i,j) = std::numeric_limits<double>::quiet_NaN(); 83 81 centroids_(i,j) = std::numeric_limits<double>::quiet_NaN(); 84 82 } 85 83 } 86 84 } … … 92 90 sigma2_.resize(data.rows(), target.nof_classes()); 93 91 centroids_.resize(data.rows(), target.nof_classes()); 94 utility::Matrix nof_in_class(data.rows(), target.nof_classes());95 92 96 93 for(size_t i=0; i<data.rows(); ++i) { … … 132 129 prediction(label,sample) = sum_log_sigma; 133 130 for (size_t i=0; i<ml.rows(); ++i) 134 // Ignoring missing features 135 if (!std::isnan(sigma2_(i, label))) 136 prediction(label, sample) += 137 std::pow(ml(i, label)-centroids_(i, label),2)/ 138 sigma2_(i, label); 131 prediction(label, sample) += 132 std::pow(ml(i, label)-centroids_(i, label),2)/ 133 sigma2_(i, label); 139 134 } 140 135 } … … 159 154 statistics::AveragerWeighted aw; 160 155 for (size_t i=0; i<mlw.rows(); ++i) 161 // missing training features 162 if (!std::isnan(sigma2_(i, label))) 163 aw.add(std::pow(mlw.data(i, label)-centroids_(i, label),2)/ 164 sigma2_(i, label), mlw.weight(i, label)); 156 aw.add(std::pow(mlw.data(i, label)-centroids_(i, label),2)/ 157 sigma2_(i, label), mlw.weight(i, label)); 165 158 prediction(label,sample) = sum_log_sigma + mlw.rows()*aw.mean()/2; 166 159 } … … 171 164 void NBC::standardize_lnP(utility::Matrix& prediction) const 172 165 { 173 // -lnP might be a large number, in order to avoid out of bound 174 // problems when calculating P = exp(- -lnP), we centralize matrix 175 // by adding a constant. 176 statistics::Averager a; 177 add(a, prediction.begin(), prediction.end()); 166 /// -lnP might be a large number, in order to avoid out of bound 167 /// problems when calculating P = exp(- -lnP), we centralize matrix 168 /// by adding a constant. 169 // lookup of prediction with zero weights for NaNs 170 MatrixLookupWeighted mlw(prediction); 171 statistics::AveragerWeighted a; 172 add(a, mlw.begin(), mlw.end()); 178 173 prediction -= a.mean(); 179 174 … … 185 180 // normalize each row (label) to sum up to unity (probability) 186 181 for (size_t i=0; i<prediction.rows(); ++i){ 187 prediction.row_view(i) *= 1.0/sum(prediction.row_const_view(i)); 182 // calculate sum of row ignoring NaNs 183 statistics::AveragerWeighted a; 184 add(a, mlw.begin_row(i), mlw.end_row(i)); 185 prediction.row_view(i) *= 1.0/a.sum_wx(); 188 186 } 189 187 } … … 195 193 assert(label<sigma2_.columns()); 196 194 for (size_t i=0; i<sigma2_.rows(); ++i) { 197 if (!std::isnan(sigma2_(i,label))) 198 sum_log_sigma += std::log(sigma2_(i, label)); 195 sum_log_sigma += std::log(sigma2_(i, label)); 199 196 } 200 197 return sum_log_sigma / 2; // taking sum of log(sigma) not sigma2 -
trunk/yat/classifier/NBC.h
r1182 r1184 41 41 42 42 Each class is modelled as a multinormal distribution with 43 features being independent: \f$ p(x|c) =\prod43 features being independent: \f$ P(x|c) \propto \prod 44 44 \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp \left( 45 \frac{(x_i-m_i)^2}{2\sigma_i^2)} \right)\f$45 -\frac{(x_i-\mu_i)^2}{2\sigma_i^2)} \right)\f$ 46 46 */ 47 47 class NBC : public SupervisedClassifier … … 64 64 65 65 /// 66 /// Train theclassifier using training data and targets.66 /// \brief Train the %classifier using training data and targets. 67 67 /// 68 68 /// For each class mean and variance are estimated for each 69 /// feature (see Averager and AveragerWeightedfor details).69 /// feature (see statistics::Averager for details). 70 70 /// 71 /// If variance can not be estimated (only one valid data point)72 /// for a feature and label, then that feature is ignored for that73 /// specific label.71 /// If there is only one (or zero) samples in a class, parameters 72 /// cannot be estimated. In that case, parameters are set to NaN 73 /// for that particular class. 74 74 /// 75 75 void train(const MatrixLookup&, const Target&); 76 76 77 77 /// 78 /// Train the classifier using weighted training data and targets. 78 /// \brief Train the %classifier using weighted training data and 79 /// targets. 80 /// 81 /// For each class mean and variance are estimated for each 82 /// feature (see statistics::AveragerWeighted for details). 83 /// 84 /// To estimate the parameters of a class, each feature of the 85 /// class must have at least two non-zero data points. Otherwise 86 /// the parameters are set to NaN and any prediction will result 87 /// in NaN for that particular class. 79 88 /// 80 89 void train(const MatrixLookupWeighted&, const Target&); 81 82 83 90 84 91 /** 92 \brief Predict samples using unweighted data 93 85 94 Each sample (column) in \a data is predicted and predictions 86 are returned in the corresponding column in passed \a res. Each 87 row in \a res corresponds to a class. The prediction is the 88 estimated probability that sample belong to class \f$ j \f$ 95 are returned in the corresponding column in passed \a 96 result. Each row in \a result corresponds to a class. The 97 prediction is the estimated probability that sample belong to 98 class \f$ j \f$: 89 99 90 \f$ P_j = \frac{1}{Z}\prod_i {\frac{1}{\sqrt{2\pi\sigma_i^2}}}91 \exp (\frac{(x_i-\mu_i)^2}{\sigma_i^2})\f$, where \f$ \mu_i100 \f$ P_j = \frac{1}{Z}\prod_i\frac{1}{\sqrt{2\pi\sigma_i^2}} 101 \exp\left(-\frac{(x_i-\mu_i)^2}{2\sigma_i^2}\right)\f$, where \f$ \mu_i 92 102 \f$ and \f$ \sigma_i^2 \f$ are the estimated mean and variance, 93 respectively. If a \f$ \sigma_i \f$ could not be estimated 94 during training, corresponding factor is set to unity, in other 95 words, that feature is ignored for the prediction of that 96 particular class. Z is chosen such that total probability, \f$ 97 \sum P_j \f$, equals unity. 103 respectively. Z is chosen such that total probability equals unity, \f$ 104 \sum P_j = 1 \f$. 105 106 \note If parameters could not be estimated during training, due 107 to lack of number of sufficient data points, the output for 108 that class is NaN and not included in calculation of 109 normalization factor \f$ Z \f$. 98 110 */ 99 void predict(const MatrixLookup& data, utility::Matrix& res ) const;111 void predict(const MatrixLookup& data, utility::Matrix& result) const; 100 112 101 113 /** 114 \brief Predict samples using weighted data 115 102 116 Each sample (column) in \a data is predicted and predictions 103 are returned in the corresponding column in passed \a res. Each 104 row in \a res corresponds to a class. The prediction is the 105 estimated probability that sample belong to class \f$ j \f$ 117 are returned in the corresponding column in passed \a 118 result. Each row in \a result corresponds to a class. The 119 prediction is the estimated probability that sample belong to 120 class \f$ j \f$: 106 121 107 \f$ P_j = \frac{1}{Z}\prod_i\({\frac{1}{\sqrt{2\pi\sigma_i^2}}}\) 108 \exp(\frac{\sum{w_i(x_i-\mu_i)^2}{\sigma_i^2}}{\sum w_i})\f$, 109 where \f$ \mu_i 110 \f$ and \f$ \sigma_i^2 \f$ are the estimated mean and variance, 111 respectively. If a \f$ \sigma_i \f$ could not be estimated 112 during training, corresponding factor is set to unity, in other 113 words, that feature is ignored for the prediction of that 114 particular class. Z is chosen such that total probability, \f$ 115 \sum P_j \f$, equals unity. 122 \f$ P_j = \frac{1}{Z} \exp\left(-N\frac{\sum 123 {w_i(x_i-\mu_i)^2}/(2\sigma_i^2)}{\sum w_i}\right)\f$, 124 where \f$ \mu_i \f$ and \f$ \sigma_i^2 \f$ are the estimated 125 mean and variance, respectively. Z is chosen such that 126 total probability equals unity, \f$ \sum P_j = 1 \f$. 127 128 \note If parameters could not be estimated during training, due 129 to lack of number of sufficient data points, the output for 130 that class is NaN and not included in calculation of 131 normalization factor \f$ Z \f$. 116 132 */ 117 void predict(const MatrixLookupWeighted& data, utility::Matrix& res) const;133 void predict(const MatrixLookupWeighted& data,utility::Matrix& result) const; 118 134 119 135
Note: See TracChangeset
for help on using the changeset viewer.