Changeset 1220 for trunk/yat/classifier
- Timestamp:
- Mar 11, 2008, 1:07:42 AM (16 years ago)
- Location:
- trunk/yat/classifier
- Files:
-
- 3 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/yat/classifier/Sampler.cc
r1134 r1220 43 43 } 44 44 45 u_longSampler::size(void) const45 size_t Sampler::size(void) const 46 46 { 47 47 return training_index_.size(); -
trunk/yat/classifier/Sampler.h
r1219 r1220 59 59 /// @return number of partitions 60 60 /// 61 u_longsize(void) const;61 size_t size(void) const; 62 62 63 63 /// … … 70 70 /// 71 71 const utility::Index& 72 training_index(s td::vector<size_t>::size_typei) const;72 training_index(size_t i) const; 73 73 74 74 /// -
trunk/yat/classifier/SubsetGenerator.h
r1206 r1220 6 6 /* 7 7 Copyright (C) 2006 Jari Häkkinen, Markus Ringnér, Peter Johansson 8 Copyright (C) 2007 Peter Johansson8 Copyright (C) 2007, 2008 Peter Johansson 9 9 10 10 This file is part of the yat library, http://trac.thep.lu.se/yat … … 33 33 #include "Sampler.h" 34 34 #include "yat/utility/Index.h" 35 #include "yat/utility/SmartPtr.h"36 35 #include "yat/utility/yat_assert.h" 37 36 … … 45 44 namespace yat { 46 45 namespace classifier { 47 48 46 /// 49 /// @brief Class splitting a set into training setand validation set.47 /// @brief Class splitting Data into training and validation set. 50 48 /// 51 template <typename T> 49 /// A SubsetGenerator splits a Data into several training and 50 /// validation data. A Sampler is used to select samples for a 51 /// training Data set and a validation Data set, respectively. In 52 /// addition a FeatureSelector can be used to select Features. For 53 /// more details see constructors. 54 /// 55 /// \note Data must be one of MatrixLookup, MatrixLookupWeighted, or 56 /// KernelLookup. 57 /// 58 template <typename Data> 52 59 class SubsetGenerator 53 60 { 54 61 public: 55 62 /** 56 type of data that is stored in SubsetGenerator63 type of Data that is stored in SubsetGenerator 57 64 */ 58 typedef Tvalue_type;59 60 /// 61 /// @brief C onstructor65 typedef Data value_type; 66 67 /// 68 /// @brief Create SubDataSets 62 69 /// 63 /// @param sampler sampler 64 /// @param data data to split up in validation and training. 65 /// 66 SubsetGenerator(const Sampler& sampler, const T& data); 67 68 /// 69 /// @brief Constructor 70 /// Creates N training data sets and N validation data sets, where 71 /// N equals the size of \a sampler. Data must be one of 72 /// MatrixLookup, MatrixLookupWeighted, or KernelLookup. 73 /// 74 /// In case of MatrixLookup or MatrixLookupWeighted, each column 75 /// corresponds to a sample and the \a sampler is used to select 76 /// columns. Sampler::training_index(size_t) is used to select 77 /// columns for the corresponding traing_data, and 78 /// Sampler::validation_index(size_t) is used to select columns 79 /// for the corresponding validation_data. 80 /// 81 /// In case of a KernelLookup it is a bit different. A symmetric 82 /// training kernel is created using 83 /// Sampler::training_index(size_t) to select rows and 84 /// columns. The validation kernel is typically not symmetric, but 85 /// the columns correspond to a validation sample and each row 86 /// corresponds to a training sample. Consequently 87 /// Sampler::training_index(size_t) is used to select rows, and 88 /// Sampler::validation_index(size_t) is used to select columns. 89 /// 90 /// @param sampler Sampler that is used to select samples. 91 /// @param data Data to split up in validation and training. 92 /// 93 SubsetGenerator(const Sampler& sampler, const Data& data); 94 95 /// 96 /// @brief Create SubDataSets with feature selection 70 97 /// 98 /// Creates N training data sets and N validation data sets, where 99 /// N equals the size of \a sampler. The Sampler defines which 100 /// samples are included in a subset. Likewise a FeatureSelector, 101 /// \a fs, is used to select features. The selection is based on 102 /// not based on the entire dataset but solely on the training 103 /// dataset. Data must be one of MatrixLookup, 104 /// MatrixLookupWeighted, or KernelLookup. 105 /// 106 /// In case of MatrixLookup or MatrixLookupWeighted, each column 107 /// corresponds to a sample and the \a sampler is used to select 108 /// columns. Sampler::training_index(size_t) is used to select 109 /// columns for the corresponding traing_data, and 110 /// Sampler::validation_index(size_t) is used to select columns 111 /// for the corresponding validation_data. The FeatureSelector is 112 /// used to select features, i.e., to select rows to be included 113 /// in the subsets. 114 /// 115 /// In case of a KernelLookup it is a bit different. A symmetric 116 /// training kernel is created using 117 /// Sampler::training_index(size_t) to select rows and 118 /// columns. However, the created KernelLookup is not simply the 119 /// subkernel of \a data, but each element is recalculated using 120 /// the features selected by FeatureSelector \a fs. In the 121 /// validation kernel each column corresponds to a validation 122 /// sample and each row corresponds to a training 123 /// sample. Consequently Sampler::training_index(size_t) is used 124 /// to select rows, and Sampler::validation_index(size_t) is used 125 /// to select columns. The same set of features are used to 126 /// caclulate the elements as for the training kernel, i.e., 127 /// feature selection is based on training data. 128 /// 71 129 /// @param sampler taking care of partioning dataset 72 130 /// @param data data to be split up in validation and training. 73 131 /// @param fs Object selecting features for each subset 74 132 /// 75 SubsetGenerator(const Sampler& sampler, const T& data,133 SubsetGenerator(const Sampler& sampler, const Data& data, 76 134 FeatureSelector& fs); 77 135 … … 84 142 /// @return number of subsets 85 143 /// 86 u_longsize(void) const;144 size_t size(void) const; 87 145 88 146 /// … … 92 150 93 151 /// 94 /// @return the sampler for the total set 95 /// 96 // const Sampler& sampler(void) const; 97 98 /// 99 /// @return training data 100 /// 101 const T& training_data(size_t i) const; 102 152 /// See constructors for details on how training data are 153 /// generated. 154 /// 155 /// @return ith training data 156 /// 157 const Data& training_data(size_t i) const; 158 159 /// 160 /// Features that are used to create ith training data and 161 /// validation data. 103 162 /// 104 163 /// @return training features … … 107 166 108 167 /// 109 /// @return training index168 /// @return Index of samples included in ith training samples. 110 169 /// 111 170 const utility::Index& training_index(size_t i) const; 112 171 113 172 /// 114 /// @return training target 115 /// 116 const Target& training_target(std::vector<Target>::size_type i) const; 117 118 /// 119 /// @return validation data 120 /// 121 const T& validation_data(size_t i) const; 122 123 /// 124 /// @return validation index 125 /// 126 const utility::Index& 127 validation_index(std::vector<size_t>::size_type i) const; 128 129 /// 130 /// @return validation target 131 /// 132 const Target& validation_target(std::vector<Target>::size_type i) const; 173 /// @return Targets of ith set of training samples 174 /// 175 const Target& training_target(size_t i) const; 176 177 /// 178 /// See constructors for details on how validation data are 179 /// generated. 180 /// 181 /// @return ith validation data 182 /// 183 const Data& validation_data(size_t i) const; 184 185 /// 186 /// @return Index of samples included in ith validation samples. 187 /// 188 const utility::Index& validation_index(size_t i) const; 189 190 /// 191 /// @return Targets of ith set validation samples 192 /// 193 const Target& validation_target(size_t i) const; 133 194 134 195 private: … … 143 204 std::vector<utility::Index > features_; 144 205 const Sampler& sampler_; 145 std::vector<const T*> training_data_;206 std::vector<const Data*> training_data_; 146 207 std::vector<Target> training_target_; 147 std::vector<const T*> validation_data_;208 std::vector<const Data*> validation_data_; 148 209 std::vector<Target> validation_target_; 149 210 … … 153 214 // templates 154 215 155 template<typename T>156 SubsetGenerator< T>::SubsetGenerator(const Sampler& sampler,157 const T& data)216 template<typename Data> 217 SubsetGenerator<Data>::SubsetGenerator(const Sampler& sampler, 218 const Data& data) 158 219 : f_selector_(NULL), sampler_(sampler) 159 220 { … … 170 231 171 232 172 template<typename T>173 SubsetGenerator< T>::SubsetGenerator(const Sampler& sampler,174 const T& data,233 template<typename Data> 234 SubsetGenerator<Data>::SubsetGenerator(const Sampler& sampler, 235 const Data& data, 175 236 FeatureSelector& fs) 176 237 : f_selector_(&fs), sampler_(sampler) … … 188 249 189 250 190 template<typename T>191 SubsetGenerator< T>::~SubsetGenerator()251 template<typename Data> 252 SubsetGenerator<Data>::~SubsetGenerator() 192 253 { 193 254 utility::yat_assert<std::runtime_error>(training_data_.size()==validation_data_.size()); … … 199 260 200 261 201 template<typename T>202 void SubsetGenerator< T>::build(const MatrixLookup& ml)262 template<typename Data> 263 void SubsetGenerator<Data>::build(const MatrixLookup& ml) 203 264 { 204 265 if (!f_selector_)// no feature selection … … 231 292 232 293 233 template<typename T>234 void SubsetGenerator< T>::build(const MatrixLookupWeighted& ml)294 template<typename Data> 295 void SubsetGenerator<Data>::build(const MatrixLookupWeighted& ml) 235 296 { 236 297 if (!f_selector_)// no feature selection … … 260 321 } 261 322 262 template<typename T>263 void SubsetGenerator< T>::build(const KernelLookup& kernel)323 template<typename Data> 324 void SubsetGenerator<Data>::build(const KernelLookup& kernel) 264 325 { 265 326 for (u_long k=0; k<size(); k++){ … … 304 365 305 366 306 template<typename T>307 u_long SubsetGenerator<T>::size(void) const367 template<typename Data> 368 size_t SubsetGenerator<Data>::size(void) const 308 369 { 309 370 return sampler_.size(); … … 311 372 312 373 313 template<typename T>314 const Target& SubsetGenerator< T>::target(void) const374 template<typename Data> 375 const Target& SubsetGenerator<Data>::target(void) const 315 376 { 316 377 return sampler_.target(); … … 318 379 319 380 320 template<typename T>321 const T&322 SubsetGenerator< T>::training_data(size_t i) const381 template<typename Data> 382 const Data& 383 SubsetGenerator<Data>::training_data(size_t i) const 323 384 { 324 385 return *(training_data_[i]); … … 326 387 327 388 328 template<typename T>389 template<typename Data> 329 390 const utility::Index& 330 SubsetGenerator< T>::training_features(size_t i) const391 SubsetGenerator<Data>::training_features(size_t i) const 331 392 { 332 393 utility::yat_assert<std::runtime_error>(features_.size(), … … 336 397 337 398 338 template<typename T>399 template<typename Data> 339 400 const utility::Index& 340 SubsetGenerator< T>::training_index(size_t i) const401 SubsetGenerator<Data>::training_index(size_t i) const 341 402 { 342 403 return sampler_.training_index(i); … … 344 405 345 406 346 template<typename T>407 template<typename Data> 347 408 const Target& 348 SubsetGenerator< T>::training_target(std::vector<Target>::size_typei) const409 SubsetGenerator<Data>::training_target(size_t i) const 349 410 { 350 411 return training_target_[i]; … … 352 413 353 414 354 template<typename T>355 const T&356 SubsetGenerator< T>::validation_data(size_t i) const415 template<typename Data> 416 const Data& 417 SubsetGenerator<Data>::validation_data(size_t i) const 357 418 { 358 419 return *(validation_data_[i]); … … 360 421 361 422 362 template<typename T>423 template<typename Data> 363 424 const utility::Index& 364 SubsetGenerator< T>::validation_index(std::vector<size_t>::size_typei) const425 SubsetGenerator<Data>::validation_index(size_t i) const 365 426 { 366 427 return sampler_.validation_index(i); … … 368 429 369 430 370 template<typename T>431 template<typename Data> 371 432 const Target& 372 SubsetGenerator< T>::validation_target(std::vector<Target>::size_typei) const433 SubsetGenerator<Data>::validation_target(size_t i) const 373 434 { 374 435 return validation_target_[i];
Note: See TracChangeset
for help on using the changeset viewer.