Ignore:
Timestamp:
Oct 21, 2008, 6:48:24 PM (13 years ago)
Author:
Peter
Message:

fixes #452

File:
1 edited

Legend:

Unmodified
Added
Removed
  • trunk/yat/statistics/KolmogorovSmirnov.h

    r1487 r1593  
    4747
    4848    /**
     49       \brief Large-Sample Approximation
     50
     51       This analytical approximation of p-value can be used when all
     52       weight equal unity and sample sizes \a n and \a m are
     53       large. The p-value is calcuated as \f$ P = \displaystyle - 2
     54       \sum_{k=1}^{\infty} (-1)^ke^{-2k^2s^2}\f$, where s is the
     55       scaled score:
     56
     57       \f$ s = \sqrt\frac{nm}{n+m} \f$ score().
     58
     59       \since New in yat 0.5
     60
     61       Following Hollander and Wolfe
     62    */
     63    double p_value(void) const;
     64
     65    /**
    4966       \brief p-value
    5067
     
    6481
    6582       \f$ sup_x | F_1(x) - F_2(x) | \f$ where
    66        \f$ F(x) = \sum_{i:x_i\le x}w_i \f$
     83       \f$ F(x) = \frac {\sum_{i:x_i\le x}w_i }{ \sum w_i }\f$
    6784    */
    6885    double score(void) const;
     
    7693    typedef std::set<trip, std::greater<trip> > data_w;
    7794    data_w data_;
    78     size_t n1_;
    79     size_t n2_;
    8095    double sum_w1_;
    8196    double sum_w2_;
Note: See TracChangeset for help on using the changeset viewer.