Changeset 3614
- Timestamp:
- Feb 6, 2017, 2:37:33 AM (6 years ago)
- Location:
- trunk/yat/regression
- Files:
-
- 4 added
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/yat/regression/Makefile.am
r2932 r3614 29 29 yat/regression/LinearInterpolation.cc yat/regression/LinearWeighted.cc \ 30 30 yat/regression/Local.cc yat/regression/MultiDimensional.cc \ 31 yat/regression/MultiDimensionalWeighted.cc yat/regression/Naive.cc \ 31 yat/regression/MultiDimensionalWeighted.cc \ 32 yat/regression/Multivariate.cc \ 33 yat/regression/Naive.cc \ 32 34 yat/regression/NaiveWeighted.cc yat/regression/OneDimensional.cc \ 33 35 yat/regression/OneDimensionalWeighted.cc \ … … 51 53 $(srcdir)/yat/regression/MultiDimensional.h \ 52 54 $(srcdir)/yat/regression/MultiDimensionalWeighted.h \ 55 $(srcdir)/yat/regression/Multivariate.h \ 53 56 $(srcdir)/yat/regression/Naive.h \ 54 57 $(srcdir)/yat/regression/NaiveWeighted.h \ 58 $(srcdir)/yat/regression/NegativeBinomial.h \ 55 59 $(srcdir)/yat/regression/OneDimensional.h \ 56 60 $(srcdir)/yat/regression/OneDimensionalWeighted.h \ … … 58 62 $(srcdir)/yat/regression/PolynomialInterpolation.h \ 59 63 $(srcdir)/yat/regression/PolynomialWeighted.h \ 64 $(srcdir)/yat/regression/Poisson.h \ 60 65 $(srcdir)/yat/regression/TukeyBiweight.h -
trunk/yat/regression/MultiDimensional.h
r3611 r3614 5 5 6 6 /* 7 Copyright (C) 2005, 2006, 2007, 2008 Jari Häkkinen, Peter Johansson8 7 Copyright (C) 2009 Peter Johansson 9 8 … … 24 23 */ 25 24 25 #include "Multivariate.h" 26 26 27 #include "yat/utility/Matrix.h" 27 28 #include "yat/utility/Vector.h" … … 33 34 namespace regression { 34 35 35 / //36 /// @brief MultiDimesional fitting.37 ///38 class MultiDimensional 36 /** 37 \brief Linear MultiDimesional regression 38 */ 39 class MultiDimensional : public Multivariate 39 40 { 40 41 public: … … 53 54 \brief covariance of parameters 54 55 55 The covariance of fit parameters arecalculated as \f$ \sigma^256 (X'X)^{-1} \f$ where \f$ \sigma^2 \f$ is the variance of the of57 the error terms.56 The covariance of fit parameters is calculated as \f$ \sigma^2 57 (X'X)^{-1} \f$ where \f$ \sigma^2\f$ is the variance of error 58 residuals. 58 59 */ 59 60 const utility::Matrix& covariance(void) const;
Note: See TracChangeset
for help on using the changeset viewer.