Changeset 748 for trunk/yat/statistics
- Timestamp:
- Feb 11, 2007, 6:48:22 PM (17 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/yat/statistics/SNR.h
r703 r748 45 45 sometimes referred to as Golub score. The score is the ratio 46 46 between difference in mean and the sum of standard deviations 47 for two groups. \f$ \frac{ \frac{1}{n_x}\sum x_i - 48 \frac{1}{n_y}\sum y_i }{ \sigma_x + \sigma_y} \f$ where \f$ 49 \sigma \f$ is standard deviation. 47 for two groups: \f$ \frac{ m_x-m_y}{ s_x + s_y} \f$ where \f$ 48 s \f$ is standard deviation. 50 49 */ 51 50 class SNR : public Score … … 58 57 SNR(bool absolute=true); 59 58 60 /// 61 /// Calculates the value of SNR score. @return SNR score if 62 /// absolute=true absolute value of t-score is returned 63 /// 59 /** 60 SNR is defined as \f$ \frac{m_x-m_y}{s_x+s_y} \f$ where \f$ m 61 \f$ and \f$ s \f$ are mean and standard deviation, 62 respectively. @see Averager 63 64 @return SNR score. If absolute=true absolute value of SNR is 65 returned 66 */ 64 67 double score(const classifier::Target& target, 65 68 const utility::vector& value); 66 69 67 /// 68 /// Weighted version of SNR @return t-score if absolute=true 69 /// absolute value of t-score is returned. 70 /// 70 /** 71 SNR is defined as \f$ \frac{m_x-m_y}{s_x+s_y} \f$ where \f$ m 72 \f$ and \f$ s \f$ are weighted versions of mean and standard 73 deviation, respectively. @see AveragerWeighted 74 75 @return SNR score. If absolute=true absolute value of SNR is 76 returned 77 */ 71 78 double score(const classifier::Target& target, 72 79 const classifier::DataLookupWeighted1D& value); 73 80 74 /// 75 /// Weighted version of SNR @return t-score if absolute=true 76 /// absolute value of t-score is returned. 77 /// 81 /** 82 SNR is defined as \f$ \frac{m_x-m_y}{s_x+s_y} \f$ where \f$ m 83 \f$ and \f$ s \f$ are weighted versions of mean and standard 84 deviation, respectively. @see AveragerWeighted 85 86 @return SNR score. If absolute=true absolute value of SNR is 87 returned 88 */ 78 89 double score(const classifier::Target& target, 79 90 const utility::vector& value,
Note: See TracChangeset
for help on using the changeset viewer.